Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-1-(4-Nitrophenyl)-3-phenylprop-2-en-1-one

Lin-Hai Jing

School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China Correspondence e-mail: jlhjhr@yahoo.com.cn

Received 16 September 2009; accepted 16 September 2009

Key indicators: single-crystal X-ray study; T = 93 K; mean σ (C–C) = 0.002 Å; R factor = 0.037; wR factor = 0.097; data-to-parameter ratio = 15.6.

In the title compound, $C_{15}H_{11}NO_3$, the configuration of the keto group with respect to the olefinic double bond is s-cis. The two benzene rings form a dihedral angle of $5.00 (5)^{\circ}$. The molecules are linked into a two-dimensional network parallel to (104) by C-H···O hydrogen bonds.

Related literature

For the biological activity of chalcone derivatives, see: Dimmock et al. (1999). For the synthesis, see: Cocconcelli et al. (2008).

Experimental

Crystal data

C ₁₅ H ₁₁ NO ₃	b = 13.159 (2) Å
$M_r = 253.25$	c = 14.450 (3) Å
Monoclinic, $P2_1/c$	$\beta = 92.106 \ (3)^{\circ}$
a = 6.2139 (10) Å	V = 1180.8 (3) Å ³

Z = 4	
Mo Ka radiation	ı
$\mu = 0.10 \text{ mm}^{-1}$	

Data collection

Rigaku SPIDER diffractometer 2687 independent reflections Absorption correction: none 2264 reflections with $I > 2\sigma(I)$ 9403 measured reflections $R_{\rm int} = 0.025$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.037$ 172 parameters $wR(F^2) = 0.097$ H-atom parameters constrained S = 1.00 $\Delta \rho_{\rm max} = 0.36 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.19 \text{ e} \text{ Å}^{-3}$ 2687 reflections

T = 93 K

 $0.50 \times 0.18 \times 0.18 \; \mathrm{mm}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C1-H1\cdots O1^{i}$ $C5-H5\cdots O3^{ii}$	0.95 0.95	2.47 2.56	3.3314 (15) 3.4635 (16)	150 160

Symmetry codes: (i) -x, -y + 1, -z; (ii) $-x + 2, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

The authors thank the Centre for Testing and Analysis, Cheng Du Branch, Chinese Academy of Sciences, for analytical support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2913).

References

Cocconcelli, G., Diodato, E., Caricasole, A., Gaviraghi, G., Genesio, E., Ghiron, C., Magnoni, L., Pecchioli, E., Plazzi, P. V. & Terstappen, G. C. (2008). Bioorg. Med. Chem. 16, 2043-2052.

Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125-1149.

Rigaku (2004). RAPID-AUTO. Rigaku/MSC Inc., The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2009). E65, o2510 [doi:10.1107/S1600536809037556]

(E)-1-(4-Nitrophenyl)-3-phenylprop-2-en-1-one

L.-H. Jing

Comment

Chalcone derivatives are a class of important compounds that possess antiprotzoal, antihelmintic, amoebicidal, anti-ulcer, antiviral, insecticidal, antibacterial, anticancer, cytotoxic and immunosuppressive activities (Dimmock *et al.*, 1999). The crystal structures of some chalcone derivatives have been reported. We report here the crystal structure of the title compound.

Bond lengths and angles in the title molecule are normal. The configuration of the keto group with respect to the olefinic double bond is typically *s-cis*, with a O1—C9—C8—C7 torsion angle of 0.5 (2)° (Fig. 1). The N1/O2/O3 and C10-C15 planes form a dihedral angle of 10.80 (11)°. The two benzene rings (C10-C15 and C1-C6) form a dihedral angle of 5.00 (5)°. The crystal packing is stabilized by C—H…O hydrogen bonds (Table 1). The molecules are linked into a two-dimensional network parallel to the (T 0 4) by the above hydrogen bonds.

Experimental

The title compound was synthesized according to the method reported in the literature (Cocconcelli *et al.*, 2008). Yellow single crystals suitable for X-ray diffraction were obtained by slow evaporation of a acetone solution.

Refinement

All H atoms were placed in calculated positions, with C-H = 0.95 Å, and refined using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering.

(E)-1-(4-Nitrophenyl)-3-phenylprop-2-en-1-one

 Crystal data

 $C_{15}H_{11}NO_3$ $F_{000} = 528$
 $M_r = 253.25$ $D_x = 1.425 \text{ Mg m}^{-3}$

 Monoclinic, $P2_1/c$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$

 Hall symbol: -P 2ybc
 Cell parameters from 3448 reflections

 a = 6.2139 (10) Å $\theta = 3.1-27.5^{\circ}$

<i>b</i> = 13.159 (2) Å	$\mu = 0.10 \text{ mm}^{-1}$
c = 14.450 (3) Å	T = 93 K
$\beta = 92.106 \ (3)^{\circ}$	Needle, yellow
$V = 1180.8 (3) \text{ Å}^3$	$0.50 \times 0.18 \times 0.18 \text{ mm}$
Z = 4	

Data collection

Rigaku SPIDER diffractometer	2264 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.025$
Monochromator: graphite	$\theta_{\text{max}} = 27.5^{\circ}$
T = 93 K	$\theta_{\min} = 3.1^{\circ}$
ω scans	$h = -8 \rightarrow 7$
Absorption correction: none	$k = -17 \rightarrow 17$
9403 measured reflections	$l = -18 \rightarrow 15$
2687 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.037$	H-atom parameters constrained
$wR(F^2) = 0.097$	$w = 1/[\sigma^2(F_o^2) + (0.0516P)^2 + 0.336P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.00	$(\Delta/\sigma)_{\rm max} = 0.001$
2687 reflections	$\Delta \rho_{max} = 0.36 \text{ e} \text{ Å}^{-3}$
172 parameters	$\Delta \rho_{min} = -0.19 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Z	$U_{\rm iso}*/U_{\rm eq}$
01	0.19885 (14)	0.39882 (7)	0.06264 (7)	0.0243 (2)

02	0.89968 (15)	0.02961 (7)	0.20944 (7)	0.0266 (2)
03	1.11753 (14)	0.14090 (7)	0.27163 (7)	0.0272 (2)
N1	0.94974 (16)	0.11770 (8)	0.22851 (7)	0.0185 (2)
C1	0.11212 (19)	0.77346 (9)	0.04561 (8)	0.0179 (3)
H1	-0.0164	0.7395	0.0258	0.021*
C2	0.1184 (2)	0.87899 (9)	0.04625 (9)	0.0209 (3)
H2	-0.0059	0.9169	0.0277	0.025*
C3	0.3061 (2)	0.92892 (9)	0.07402 (9)	0.0221 (3)
Н3	0.3104	1.0011	0.0741	0.027*
C4	0.4885 (2)	0.87379 (9)	0.10183 (8)	0.0205 (3)
H4	0.6170	0.9083	0.1206	0.025*
C5	0.48224 (19)	0.76832 (9)	0.10203 (8)	0.0180 (3)
Н5	0.6066	0.7309	0.1214	0.022*
C6	0.29377 (19)	0.71675 (9)	0.07389 (8)	0.0158 (3)
C7	0.27514 (19)	0.60597 (9)	0.07315 (8)	0.0163 (2)
H7	0.1469	0.5789	0.0451	0.020*
C8	0.41785 (19)	0.53830 (9)	0.10745 (8)	0.0169 (3)
H8	0.5496	0.5604	0.1362	0.020*
C9	0.36764 (19)	0.42863 (9)	0.10009 (8)	0.0167 (3)
C10	0.52508 (19)	0.35096 (9)	0.13838 (8)	0.0155 (2)
C11	0.72971 (19)	0.37564 (9)	0.17453 (8)	0.0173 (3)
H11	0.7733	0.4448	0.1780	0.021*
C12	0.87037 (19)	0.29959 (9)	0.20556 (8)	0.0172 (3)
H12	1.0095	0.3158	0.2308	0.021*
C13	0.80212 (19)	0.19972 (9)	0.19868 (8)	0.0158 (3)
C14	0.59903 (19)	0.17265 (9)	0.16446 (8)	0.0174 (3)
H14	0.5558	0.1034	0.1618	0.021*
C15	0.46102 (19)	0.24900 (9)	0.13438 (8)	0.0172 (3)
H15	0.3209	0.2322	0.1107	0.021*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U ²³
01	0.0198 (5)	0.0168 (4)	0.0355 (5)	-0.0023 (4)	-0.0093 (4)	0.0018 (4)
O2	0.0289 (5)	0.0153 (4)	0.0349 (5)	0.0044 (4)	-0.0061 (4)	-0.0033 (4)
O3	0.0188 (5)	0.0252 (5)	0.0367 (6)	0.0010 (4)	-0.0095 (4)	0.0031 (4)
N1	0.0180 (5)	0.0183 (5)	0.0190 (5)	0.0018 (4)	0.0005 (4)	0.0008 (4)
C1	0.0174 (6)	0.0176 (6)	0.0184 (6)	-0.0015 (5)	-0.0016 (5)	0.0006 (5)
C2	0.0212 (6)	0.0174 (6)	0.0238 (6)	0.0029 (5)	-0.0032 (5)	0.0021 (5)
C3	0.0278 (7)	0.0132 (5)	0.0250 (6)	-0.0008 (5)	-0.0022 (5)	-0.0002 (5)
C4	0.0206 (6)	0.0186 (6)	0.0221 (6)	-0.0039 (5)	-0.0017 (5)	-0.0014 (5)
C5	0.0168 (6)	0.0190 (6)	0.0181 (6)	0.0007 (5)	-0.0004 (5)	0.0013 (5)
C6	0.0180 (6)	0.0158 (6)	0.0136 (5)	0.0005 (4)	0.0013 (4)	0.0001 (4)
C7	0.0164 (6)	0.0166 (6)	0.0160 (6)	-0.0012 (4)	0.0004 (4)	-0.0004 (4)
C8	0.0157 (6)	0.0161 (6)	0.0187 (6)	-0.0021 (4)	-0.0016 (5)	-0.0009 (4)
C9	0.0169 (6)	0.0161 (6)	0.0170 (6)	-0.0007 (5)	0.0003 (5)	0.0006 (4)
C10	0.0168 (6)	0.0148 (5)	0.0147 (6)	0.0006 (4)	0.0002 (4)	-0.0001 (4)
C11	0.0186 (6)	0.0142 (5)	0.0189 (6)	-0.0019 (5)	-0.0004 (5)	-0.0004 (4)

supplementary materials

C12 C13 C14 C15	0.0151 (6) 0.0172 (6) 0.0211 (6) 0.0160 (6)	0.0182 (6) 0.0160 (6) 0.0136 (5) 0.0170 (6)	0.0181 (6) 0.0142 (5) 0.0176 (6) 0.0183 (6)	-0.0015 (4) 0.0033 (4) -0.0007 (5) -0.0018 (4)	-0.0015 (5) 0.0004 (4) -0.0010 (5) -0.0024 (5)	-0.0002 (4) 0.0006 (4) -0.0008 (4) 0.0001 (4)
Geometric paran	neters (Å, °)					
01 C0		1 2268 (15)	C7 C8		1 228	9 (17)
01—03 02—N1		1.2208(13) 1 2289(14)	С7—Н7		0.95)(1/)
02 N1		1.2209(14) 1.2331(14)	C8-C9		1 479	5 (16)
N1-C13		1.2351 (11)	С8—Н8		0.95	5 (10)
C1—C2		1.3893 (17)	C9—C1	0	1.506	0 (16)
C1—C6		1.4014 (17)	C10—C	11	1.395	1 (17)
C1—H1		0.95	C10—C	15	1.400	0 (16)
C2—C3		1.3851 (18)	C11—C	12	1.392	0 (17)
С2—Н2		0.95	С11—Н	11	0.95	
C3—C4		1.3923 (18)	С12—С	13	1.383	5 (17)
С3—Н3		0.95	С12—Н	12	0.95	
C4—C5		1.3885 (17)	С13—С	14	1.385	0 (17)
C4—H4		0.95	C14—C	15	1.380	8 (16)
C5—C6		1.4009 (17)	С14—Н	14	0.95	
C5—H5		0.95	С15—Н	15	0.95	
C6—C7		1.4624 (16)				
O2—N1—O3		123.31 (10)	С7—С8	—С9	119.1	5 (11)
O2—N1—C13		118.46 (10)	С7—С8	—H8	120.4	
O3—N1—C13		118.23 (10)	С9—С8	—H8	120.4	
C2-C1-C6		120.54 (11)	O1—C9	—C8	121.2	1 (11)
С2—С1—Н1		119.7	O1—C9	—C10	118.5	8 (11)
С6—С1—Н1		119.7	C8—C9	—C10	120.2	1 (10)
C3—C2—C1		119.95 (11)	C11—C	10—C15	119.5	0 (11)
С3—С2—Н2		120.0	C11—C	10—C9	123.3	9 (11)
C1—C2—H2		120.0	C15—C	10—С9	117.0	9 (11)
C2—C3—C4		120.28 (11)	C12—C	11—C10	120.4	0 (11)
С2—С3—Н3		119.9	C12—C	11—H11	119.8	
С4—С3—Н3		119.9	C10—C	11—H11	119.8	
C5—C4—C3		119.93 (11)	C13—C	12—C11	118.2	1 (11)
C5—C4—H4		120.0	C13—C	12—H12	120.9	
C3—C4—H4		120.0		12—H12	120.9	0 (11)
C4 - C5 - C6		120.44 (11)	C12—C	13—C14	122.8	8 (11) 2 (11)
C4—C5—H5		119.8	C12—C	13—N1 13—N1	119.3	3(11)
$C_0 - C_3 - H_3$		119.8	C14—C	13 - N1	117.7	9(10)
$C_{5} = C_{6} = C_{7}$		118.83(11) 123.37(11)	C15—C	14—C13	110.1	9(11)
$C_{1} = C_{0} = C_{7}$		123.37(11) 117.77(11)	C13—C	14—114 14—114	120.9	
$C_1 = C_0 = C_7$ $C_8 = C_7 = C_6$		127 53 (11)	C13C	15—C10	120.9	0 (11)
С8—С7—Н7		116.2	C14—C	15—H15	120.0	v (11)
С6—С7—Н7		116.2	C10—C	15—Н15	119.0	
C_{6} C_{1} C_{2} C_{3}	3	0.74 (19)			175.0	6 (10)
C1-C2-C3-C4	4	-0.36 (19)	C15—C	10—C11—C12	0.67 ((18)

C2—C3—C4—C5	-0.20 (19)	C9-C10-C11-C12	-177.52 (11)
C3—C4—C5—C6	0.38 (18)	C10-C11-C12-C13	0.57 (18)
C4—C5—C6—C1	0.00 (18)	C11-C12-C13-C14	-1.58 (18)
C4—C5—C6—C7	-179.43 (11)	C11—C12—C13—N1	178.29 (10)
C2—C1—C6—C5	-0.56 (18)	O2—N1—C13—C12	-169.34 (11)
C2—C1—C6—C7	178.91 (11)	O3—N1—C13—C12	10.81 (16)
C5—C6—C7—C8	8.14 (19)	O2—N1—C13—C14	10.54 (16)
C1—C6—C7—C8	-171.29 (12)	O3—N1—C13—C14	-169.31 (11)
C6—C7—C8—C9	179.69 (11)	C12-C13-C14-C15	1.28 (18)
C7—C8—C9—O1	0.54 (18)	N1-C13-C14-C15	-178.59 (10)
C7—C8—C9—C10	-179.81 (11)	C13-C14-C15-C10	0.04 (17)
O1—C9—C10—C11	173.86 (12)	C11-C10-C15-C14	-0.99 (18)
C8—C9—C10—C11	-5.80 (17)	C9-C10-C15-C14	177.32 (11)
O1-C9-C10-C15	-4.38 (17)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!A$		
C1—H1···O1 ⁱ	0.95	2.47	3.3314 (15)	150		
C5—H5···O3 ⁱⁱ	0.95	2.56	3.4635 (16)	160		
Symmetry codes: (i) $-x$, $-y+1$, $-z$; (ii) $-x+2$, $y+1/2$, $-z+1/2$.						

